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Models for extremes of environmen- 
tal processes have been studied exten- 
sively in recent years. The particular 
problems arising when attempting lo es- 
timate return levels from sequences of 
measurements an the appropriate vari- 
ables have been considered in some 
detail. In particular, the aspects of sea- 
sonal variation and short-range depen- 
dence have received a great deal of 
attention. In this paper we present a 
case study based on 10 years of hourly 
wind speed mea.<iurement$ collected at 
a U-K, site, elucidating the most suc- 
cessful procedure emerging from an ex- 
tensive Study of this data. The basic 
model (in which an extreme value 
distribution is fitted to ciu^ster peak cx- 
cesscji over a high threshold) is stan- 
dard. However the emphasis is on a 
number of practical problems which 

will arise when such models are fitted 
to wind speeds, but which have re- 
ceived little consideration. These in- 
clude: model selection and assessment 
of model adequacy when the threshold, 
and some or all of the parameters, arc 
allowed to vary seasonally; the choice 
of the best combination of threshold 
and cluster identification procedure; 
and the choice of a measure of preci- 
sion for return level estimates. The aim 
is to suggest an algorithm which can be 
generally applied lo the problem of 
gust return level estimation at individ- 
ual sites. 

Key words: extreme value theory; gen- 
eralized parelo distribution; peaks uvcr 
threshold; return levels; statistics of ex- 
tremes; wind speed. 

1.   Introduction 

Threshold models for exceedances have been 
widely adopted in recent years in the study of ex- 
tremes of environmental processes. The main ad- 
vantage of such models over the so-called 
"classicar' extreme value models (in which a limit- 
ing distribution is fitted to the largest order statis- 
tics selected form fixed time intervals) is their 
greater flexibility in the manner in which events are 
identified as "extreme." This generally leads to a 
larger number of extreme events being available 
for analysis, and this in turn to more precise esti- 
mates for return levels and return periods. 

The price paid for the increased efficiency of 
data exploitation and consequent improvements in 
estimation precision is, as one would expect, a 
greater complexity of model. Seasonal variation 
and short-range correlation, almost always present 
in environmental time series, can no longer be ig- 
nored in the manner of a traditional "annual max- 
ima" analysis {or "Gumbel analysis"). Instead they 
must be given careful consideration. Models which 
take account of both of these features have re- 
ceived considerable attention in the literature (e.g., 
Refs. [2,3,7,8] and the associated discussion). 
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In this paper we consider a complete study of a 
sequence of wind speed measurements recorded at 
a single U.K. site. We address some of the practical 
complexities that arise when adopting a threshold- 
based approach to extremes of environmental time 
series. In particular, the related issues of 

1. choosing a threshold large enough for the distri- 
bution of excesses to approximate to a limiting 
form, 

2. allowing the threshold and some or all of the 
parauneters to vary seasonally, 

3. employing a threshold-based declustering 
method for identification of storm peaks, 

give rise to a situation which requires some careful 
consideration in terms of the practical application 
of existing models. 

The theoretical arguments supporting the use of 
threshold models in the manner considered in this 
paper, already validated in previous studies (e.g., 
Ref. [8J), suggest that the techniques employed 
should be applicable at any site at which the natu- 
ral mechanism underlying the generation of ex- 
treme winds is not capable of taking on several 
distinct forms (e.g., hurricanes and conventional 
storms). Thus the approach considered here could 
be viewed as a possible algorithm for the estima- 
tion of the extreme wind potential at any site in a 
temperate climate. 

2.   Background to the Study 

2.1   Wind: The Variable 

The behaviour of wind velocity as a continuous 
variable demonstrates certain characteristics which 
distinguish it from other environmental variables. 
In common with other such variables, clear sea- 
sonal patterns and short-range dependence are 
Strong features of the wind climate at most loca- 
tions. However, in comparison with these others, 
wind velocity is fairly well-behaved in a number of 
ways. Unlike sea-level (Ref. [9]), wind speed does 
not naturally break down into distinct components, 
and unlike rainfall, the wind does not arrive in 
clearly identifiable episodes. In comparison with 
many environmental phenomena, wind velocity is 
not subject to very violent departures from the 
norm. Although a wind velocity of 200 mph may 
sound rather severe, from a statistical point of view 
such departures from mean levels are small com- 
pared with those occasionally demonstrated by 
rainfall levels over short periods, flow rates in riv- 

ers, and concentrations of certain pollutants. The 
relative stability of wind velocity is more akin to 
sea-level behaviour, but wind speed differs from 
sea-level in being one of the most rapidly varying of 
all environmental variables. Conditional on the un- 
derlying "level" of the wind (characterized by 
storms and periods of calm), many distinct gusts 
can be observed in periods as short as several min- 
utes. In a sense therefore, while being rather sta- 
ble, the wind can provide us with a great deal of 
information in a relatively short time. This 
strengthens arguments supporting limiting asymp- 
totic distributions for the most extreme gusts, and 
potentially allows US to make inferences about 
long-period return levels from comparatively short 
runs of measurements. 

2.2   Extreme Value Models: Exploiting the 
Variable 

We consider the problem of estimating gust re- 
turn levels for specified periods of the order of 50 
or more years, when data available consist of 
recorded maximum gusts taken over short intervals 
(say 1 hour or 1 day), and are collected over a time 
period which may be short in comparison to the 
return periods (perhaps less than 10 years). In such 
situations, a classical approach based on annual 
maxima is unworkable, due to sparsity of data. 
Methods which make use of several order statistics 
from each year (for example the "r largest" ap- 
proach advocated by Tawn [9] in analysing extreme 
sea-levels) can produce viable estimates of 50 year 
gust return levels from as little as 10 years of data 
[10]. However, such methods must take account of 
serial correlation, and are vulnerable to the effects 
of seasonal variation. Seasonal effects could be in- 
corporated into the models, but given the addi- 
tional complexity this would entail, it is thought 
preferable to convert to a threshold-based ap- 
proach. The main advantage over the use of order 
statistics from fixed time intervals is the additional 
flexibility in the choice of extreme events for analy- 
sis. This arises from allowing the number of such 
events which occur over a fixed period to vary ac- 
cording to the behaviour of the wind during that 
time. Serial correlation can be dealt with by identi- 
fying clusters of observations above a threshold, 
which are deemed to be correlated, and discarding 
all but the largest observation within each cluster. 
The aim here is to filter out a set of independent 
"cluster peak excesses" for further analysis (Ref. 
[7]). Seasonal variability in the behaviour of 
extremes  can  be   incorporated  by  allowing  the 
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threshold (above which events are deemed to be 
extreme), and the distribution of excesses over this 
threshold, to vary through the year. However the 
justification for such a model is not immediate and 
is worth considering in a little more depth. 

It is usual in strongly seasonal climates for the 
occurrence of truly extreme wind speeds to be con- 
fined to a certain part of the yearly cycle. In the 
U.K- for example, it is very unusual for wind dam- 
age to occur outside the period October through 
March. However a model for extreme values which 
takes account of this seasonality will select as ex- 
treme events all gusts which are large ^en the time 
of year, tf the probability of important levels being 
exceeded during certain seasons is negligible, then 
there is only a point to modelling the extremes ob- 
served during these periods if we believe that they 
can supply additional information about what may 
happen in the seasons in which genuinely large 
events can occur. For this to be the case, we must 
assume that there is some homogeneity in the ex- 
tremal behaviour across the different seasons- 
that in some sense it is fundamentally the same 
mechanism which is responsible for the generation 
of large gusts throughout the year, and it is just 
some of the associated parameters of this mecha- 
nism which change. Fortunately, there are often 
good reasons for making this assumption. In tem- 
perate climates, it is essentially the same alternat- 
ing passage of anticyclones and depressions which 
leads to all the storms which occur throughout the 
year. It is merely the severity of these systems 
which is seasonally variable. Hence it seems rea- 
sonable to assume that the manner in which targe 
events cluster together will be broadly homoge- 
neous throughout the year. 

A further, more tentative contention is that the 
patterns of turbulence caused by the local terrain 
around a site also remain essentially unchanged 
throughout the annual cycle. Since it is this turbu- 
lence that is the cause of gusting, i.e., very short 
term fluctuations away from the mean wind speed, 
and since the systems generating sequences of high 
or low mean speeds appear to differ from season to 
season only in their severity, we suggest that the 
shape of the upper tail in the distribution of gusts 
could well be homogeneous throughout the year 
(i.e., the distribution of extremes varies seasonally 
only in terms of location and scale). In terms of 
fitting extreme value distributions to large gusts, 
this would be reflected by the shape parameter 
(denoted here by k) being held constant across all 
seasons. 

Of course homogeneity conditions on both clus- 
tering behaviour of large gusts, and the shape of 
the upper tail in their distribution, must be verified 
from the data. However, previous studies suggest 
that such assumptions are often validated, and can 
then provide an important route to a more efficient 
exploitation of data. This will be demonstrated in 
the case study which follows. Working with hourly 
maximum gusts collected at Sheffield University 
for the U.K. Meteorological Office over a 10 year 
period 1975-1984, we identify four steps to the esti- 
mation of return levels. Implementing this al- 
gorithm, we obtain useful return level estimates for 
10, 50, and 1000 years. The level of precision at- 
tached to these estimates is greater than any 
achieved via a whole range of conventional analy- 
ses applied to the same data, as well as some more 
novel models (see Ref. [10]). 

3.    Step 1 —Generating a Stationary 
Series 

3.1    Dealing with Seasonal Variation 

Davison and Smith [3] identify two basic apj- 
proaches for handling seasonal data: 

1. the removal of known seasonal components to 
create a stationary (prewhitened) series; 

2. a separate seasons approach, in which a differ- 
ent model is fitted within each of a finite num- 
ber of seasons. 

For wind-speed data there are no clearly defined 
seasonal components. Also, as Davison and Smith 
[3] point out, it is important that the seasonal ef- 
fects identified are those which affect the upper 
tails, rather than the central portion of the data. 
We therefore advocate the separate seasons ap- 
proach (with a different extreme value model being 
fitted to large gusts from each season) as the more 
natural choice. However, as stated in Sec. 2, we 
hope to be able to exploit homogeneities across 
seasons in the mechanisms underlying generation 
of extreme gusts. This may involve application of a 
uniform procedure for identification of clusters of 
large observations, and/or the fitting of a constant 
shape parameter across all seasons. Now the as- 
sessment of goodness-of-fit of extreme value mod- 
els generally entails graphical rather than formal 
methods, due to the intractability of the latter, and 
the ease of application and interpretation of the 
former. In particular, the mean excess plot [mean 
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residual life (MRL), or conditional mean excess 
(CME)] is advocated for the limiting Generalized 
Pareto Distribution (GPD) fitted to threshold ex* 
cesses (see Lechner, Leigh, and Simiu [5,6] for ar- 
guments in justification). In order to check our 
homogeneity assumptions we must be able to as- 
sess the adequacy of the model to all the seasons 
simultaneously. For this purpose we suggest the 
generation of a prewhitened series for the prelimi- 
nary stages of the analysis only, namely the choice 
of an appropriate seasonally varying threshold, an 
accompanying method of identifying clusters of ob- 
servations above this threshold, and the initial as- 
sessment of model adequacies. 

In this paper, we take our seasonal unit to be I 
month. Experience suggests that by dividing the 
year into 12 equal-length seasons, we strike a good 
balance between the two conflicting requirements 
of a) reflecting reasonably accurately the continu- 
ous nature of seasonal changes in climate, and b) 
retaining a substantial amount of data for analysis 
within each season. The models we will consider 
thus consist of a separate GPD fitted to cluster 
peak excesses within each month, the threshold 
also being allowed to vary on a monthly basis. We 
will assume a homogeneous clustering mechanism 
throughout the year, but retain the option of allow- 
ing the shape parameter k to vary from month to 
month, or constraining it to take a single value 
across all months. (In other situations where a dif- 
ferent length of season is considered appropriate, 
the arguments laid out below would apply un- 
changed.) 

Under such a separate months model, an appro- 
priate set of prewhitening operations would be pro- 
vided by separate transformations t„, for each 
month m (applied to all the observations in month 
m). In order to know the precise transformations 
required, we would need to know the parameters 
in the GPDs fitted to cluster peak excesses within 
each month. Since we have not yet established how 
to obtain the cluster peak excesses (CPEs), we can- 
not know these values. However it is possible to 
make an educated guess at an appropriate set of 
monthly transformations, as shown in the following 
sections. 

3.1.1 Homogeneous Shape Parameter k We 
consider first the situation in which the GPD shape 
parameter it is assumed constant over all months. It 
is then easy to show that a set of linear transforma- 
tions tm{x)=a^ +b„,\ a>0, m = l, .... 12 can be 
chosen to render the distribution of CPEs over a 
single threshold homogeneous GPD across all 
months (see Ref [10]). 

In order to form estimates for the required 
transformations, we bear in mind that it is the up- 
per tails of the monthly distributions of all 
recorded maximum gusts (in our case hourly) 
which will yield the CPEs. Since the clustering 
mechanism is assumed homogeneous across all 
months, we suggest that a good approximation to 
the appropriate transformations wilt be obtained 
by making the upper tails of the empirical monthly 
distributions of all recorded maximum gusts coin- 
cide with each other in some sense. Since the re- 
quired transformations are linear, this can be 
achieved by transforming two high quantiles (e.g., 
0.95 and 0,99) from each month to two distinct ar- 
bitrarily specified points, say the correspronding 
theoretical quantiles of the unit exponential distri- 
bution. Explicitly, we would transform empirical 
monthly quantiles zij,, and ZTJ,, to the corresponding 
exponential quantiles qi and q^ by solving the 
simultaneous equations: 

a„^\„ +b„ =q\ 

(1) 

for a„, >0 and /?„,, and for each m = 1  12, The 
precise choice of quantiles is not critical, and is 
somewhat arbitrary. It is determined by the neces- 
sity of moving as far as possible into the upper tails, 
while still retaining a substantial amount of data 
between the two quantiles, and above the largest of 
them (in order to keep sampling error to a mini- 
mum). 

3.1.2 Variable Shape Parameter k If the 
shape parameter k is allowed to vary from month 
to month, the required monthly transformations 
are no longer linear. However, the arguments lead- 
ing to approximately the correct transformations 
being obtained (by causing the upper tails of the 
empirical monthly distributions of all monthly gusts 
mutually to coincide) still hold. This time transfor- 
mations which will lead to monthly cluster peak ex- 
ceedances being homogeneous GPD over a single 
threshold are of the form f„,{x)=a„\og,(x —c„)+b„,; 
flm >0 (easily obtained by considering the transfor- 
mation which maps one GPD cd.f. onto another). 
Estimates can be obtained by transforming three 
high quantiles (e.g., 0.90, 0.95, and 0.99) from each 
month to distinct arbitrary points. For example the 
empirical quantiles 2ij«, Zim, and Zi„ from each 
month m could be transformed to the correspond- 
ing theoretical quantiles qt, qi, and q^ of the unit 
exponential distribution by (numerically) solving 
the simultaneous equations; 
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a„log(zi^ -c„)+b„ =qi 

a„\og{zi^ -c„,)+b^=q2 (2) 

for flm >0, b„, and c„, and for each m = 1, ..., 12. 

3.2    Implementation for the Sheflield Data 

For each month, 10 years of hourly maximum 
gusts constitute approximately 7300 observations. 
Hence there are about 365 points lying above the 
0.95 quantile; 73 above the 0.99 quantile. The sam- 
pling error in estimating these quantiles' theoreti- 
cal values via the empirical equivalents is therefore 
reasonably small. We initially make the assumption 
of a homogeneous shape parameter. As we shall 
see in Sec. 4, this appears to be well-founded. For 
each month, then, linear transformations which 
map the two empirical quantiles to their theoretical 
unit exponential counterparts (2.996 and 4.605), 
are applied to all hourly maxima. The resulting 
prewhitened sequence occupies the range [-4.559, 
8.596]. 

4.    Step 2—Threshold Selection 
4.1   Methodology 

Having created an approximately stationary (in 
the upper tail at least) sequence of hourly maxi- 
mum gusts, we are in a position to experiment with 
various choices of threshold and cluster identifica- 
tion procedure. 

We propose a constant threshold for the 
prewhitened series, based on the assumption that 
the region of the data to be treated as extreme will 
constitute the same upper quantile for all seasons. 
Applying the inverses of the prewhitening transfor- 
mations to this threshold in monthly segments will 
then provide the seasonally varying threshold for 
use in the final model. 

Exceedances of the threshold will occur in clus- 
ters (storms) from which we wish to choose only 
the peak excesses for modelling. We need to be 
able to identify these clusters, bearing in mind that 
some of the observations within a storm may lie 
below the threshold. Of several possible methods, 
we opt for a fixed termination time approach, 
whereby a storm is deemed to have ended when a 
certain required number of consecutive observa- 
tions below the threshold are observed. The advan- 
tage of this method over some others is that it 

allows both the duration of storms, and the dura- 
tion of intervals between them to vary according to 
the data, reflecting the inherent natural variability 
of these quantities. 

The threshold and the termination interval may 
be regarded as the two parameters for estimation 
in this section of the analysis. Formal estimation 
procedures such as maximum likelihood are inap* 
propriate here: distributional assumptions on CPEs 
only hold if the threshold is chosen high enough, 
and we do not wish to impose a specific mode) 
structure on the underlying process which gener- 
ates storms and periods of calm. However, graphi- 
cal procedures are highly effective in this capacity. 
In particular the mean excess plot (the mean resid- 
ual life plot: see Ref, [4]; or conditional mean ex- 
cess plot: e.g., Ref. [5,6]) performs well. This is 
produced by simply plotting the mean excess of all 
model data above threshold u against u for a range 
of such thresholds. Linearity in the plot corre- 
sponds to a good fit of the GPD to excesses of the 
model data over any threshold above which the lin- 
earity holds. In our case the model data will be the 
selected cluster peak exceedance magnitudes. 

Note that the threshold and the termination in- 
terval must be chosen in combination, because 
these two parameters interact in the manner in 
which they determine the set of cluster peak ex- 
ceedances actually selected. Basically, provided 
both are large enough, the set of corresponding 
CPEs should be iid GPD, because 

1. the GPD exhibits a threshold stability property, 
whereby a good fit above a certain threshold im- 
plies a good fit above all higher thresholds, with 
merely a change in scale parameter, and 

2. if the termination interval is long enough for the 
CPEs to be approximately independent, then 
this will still hold for increased intervals. 

However, subject to this constraint, we wish to 
make both quantities as small as possible, in order 
to maximize the number of valid CPEs selected for 
analysis. 

In principle, it would be possible to produce a 
large number of mean excess plots to examine the 
model adequacy under a whole variety of combina- 
tions of threshold and termination interval. In 
practice however, this would prove a very cumber- 
some route to making an appropriate choice. In- 
stead we propose a simple modification to the 
mean excess plot which leads to considerable 
streamlining of the selection procedure. For a 
given termination interval z*, we propose that the 
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mean excess above threshold u is plotted against u, 
with the identification of cluster peak exceedances be- 
ing carried out separately for each threshold u. We 
will call this device a reclustered excess plot. The 
idea here is that linearity in such a plot above a 
certain threshold u suggests both a good fit of the 
GPD to CPEs over « selected using termination 
interval z*, and a robustness of the mean CPE to 
the threshold at which deciustering is carried out. 
Note that if such a robustness were not present, it 
would cast considerable doubt on the validity of the 
deciustering procedure. 

By producing individual reclustered excess plots 
for a range of values of z* (each one requires sur- 
prisingly little computation time), we should be 
able to identify the smallest such value for which 
the independence criterion for the CPEs is met to 
a good approximation. This will be the smallest 
value yielding a plot which straightens out above a 
certain level u, TTiis value of u is then chosen as the 
best threshold for the corresponding value of z*. 
giving the optimal pairing (u,z*). 

Note that having selected the pair (u, z*), it is 
strongly recommended that a conventional mean 
excess plot is obtained for the CPEs so obtained, 
the plotting range being u >«. This is to verify the 
validity of the choice, and in particular to check 
that approximate linearity in the reclustered excess 
plot is not caused by lack of fit of the GPD and 
non-robustness to the deciustering threshold hav- 
ing opposing effects, and thereby cancelling one- 
another out. 

For a more in-depth discussion of reclustered ex- 
cess plots and their validity, see Ref. [10]. 

We suggest that we first work with a 
prewhitened series obtained under the assumption 
of a homogeneous shape parameter k, since this 
vnll provide a very useful improvement in return 
level estimation precision if it proves to be justi- 
fied. Only if the reclustered and mean excess plots 
suggest a poor fit for all trial values of z* do we 
recommend relaxing this assumption and working 
with a prewhitened series created using non-linear 
transformations. 

Note that the effect of a moderate failure in the 
assumption of homogeneous clustering behaviour is 
not liable to be serious. While this implies that z* 
should be allowed to vary seasonally, the above 
procedure will tend to lead to the selection of the 
smallest z* value large enough to work for all sea- 
sons: any smaller value of z* will fail in some parts 
of the annual cycle, and this should show up as a 
lack of fit of the overall GPD model to CPEs from 
the prewhitened series. 

4.2 Implementation for the ShefTield Data 

Figure 1 shows reclustered excess plots produced 
for termination intervals z*=0 (all excesses), 6 h, 
15 h, 30 h, 60 h, and 120 h. Here we are using the 
prewhitened series obtained at the end of Sec. 3, 
based on the homogeneous k assumption. The 
plots appear to straighten for z * = 30 h (debatable), 
60 h, and 120 h, but not for the smaller termination 
intervals. Conventional mean excess plots (Fig. 2) 
produced for z* = 15 h, 30 h, 60 h, and 120 h using 
the corresponding linearity thresholds u =2.8, 2.6, 
2.7, and 3.3 (for z * = 15 h we use the inflection 
point) broadly support the findings, and we con- 
clude that z' = 15 h is too small; z* = 30 h is bor- 
deriine; and z * = 60 h or z * = 120 h is large enough. 

The fact that the fit of a single GPD to this 
prewhitened series appears good supports the ho- 
mogeneity assumption on k, and we do not need to 
abandon this in favour of a model which allows k to 
vary. 

We select the pairs {«=2.6, z* = 30) and 
(M = 2.7, Z* = 60) as our choices for the next stage 
of modelling. We retain two combinations because 
of the doubt over the adequacy of the termination 
interval 2* = 30 h, and in order to check on the 
robustness of final results to the precise choice of 
CPEs. The 10 years of hourly maximum gusts yield 
respectively 525 and 352 CPEs under the two pair- 
ings. The thresholds 2.6 and 2.7 lie at the 0.923 and 
0.935 quantiles in the empirical distribution of 
transformed hourly maxima. 

S.    Step 3 —Model Verification 

S.l   Likelihood Ratio Tests 

From any given choice of threshold and termina- 
tion interval, and the corresponding monthly sets 
of cluster peak exceedances, we are able to move 
directly to a separate seasons model for the raw 
(untransformed) cluster peak exceedances. Under 
the appropriate model, the excesses of these in 
month m over a segmented monthly varying 
threshold (obtained by applying the inverses of the 
prewhitening transformations to the threshold u 
identified in Sec. 4) are independent GPD(o-„,*:„,), 
with distribution functions 

G„(y;(T„Jcn,) = 0- k„y/(r„) llk„. (3) 

scale parameters o-„, >0; shape parameters fc™ arbi- 
trary; and Gn, defined on 0 <> < » if k„^ 0, and 
Q<y<a„/k,„ if Jt„, >0. The case k„=0 is inter- 
preted as the limit /c„-»0, and is the exponential 
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Fig. 1. Reclustered excess plots. 
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Fig. 2. Mean excess plots. 

distribution with mean 0-^. The parameters rr„ and 
k„ can be estimated via numerical maximum likeli- 
hood estimation. (N.B. at this stage of the mod- 
elling, the values Um are treated as fixed constants. 
Starting values for <T„ and k„ can be provided from 
the graphical estimates for scale and shape 
parameters for the prewhitened CPEs obtained us- 
ing the fact that the fitted line on the mean excess 
plot should have slope —^/(1+Jt) and intercept 
o-/(] +k); see Ref. [3]. Applying the inverses of the 
prewhitening transformations to the GPD(*r^) will 
give good preliminary estimates for «■„ and k„,). !t 
is then possible to verify the choice of homoge- 
neous or variable shape parameter k via a likeli- 
hood ratio test—twice the decrease in fitted 
log-likelihood when k is constrained to be homoge- 
neous (over a model in which it can vary from 
month to month) should be chi-square on 11 de- 
grees of freedom (11 is the change in the number 
of model parameters) under the null hypmthesis of 
homogeneity. In the surprising event of the test re- 
sult conflicting with the decision reached in Sec. 4, 
we recoinmend the likelihood ratio result as the 

more reliable, due to its more rigourous justifica- 
tion. In this instance, we would have to be satisfied 
that the preliminary analysis of Sec. 4 has at least 
allowed us to get to this stage, while proving to be 
somewhat misleading! 

Notice that once the thresholds and the termina- 
tion interval have been chosen, a separate seasons 
model which allows the shape parameter to vary 
from month to month is in fact equivalent to a 
model in which each season is treated entirely sep- 
arately, i.e., no further homogeneities are incorpo- 
rated. If the extremes occurring in some seasons 
are not truly large values, Ihen including these sea- 
sons in any further analysis will contribute little to 
return level estimation. 

5.2   Graphical Evaluation 

The overall fit of the separate months model for 
the magnitudes of excesses over thresholds can be 
verified via probability plots or quantile plots (plots 
of fitted distribution function versus empirical dis- 
tribution function, or fitted quantile versus empiri- 
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cal quantile; the plotting points being defined by 
the cluster peak exceedances). By using the fitted 
parameter values to transform each monthly set of 
CPEs to a common margin (say unit exponential), 
the fit to all seasons can be assessed simulta- 
neously. 

S3   Implementation for the Sheffield Data 

Tables 1 and 2 contain thresholds u„ and maxi- 
mum likelihood estimates for cr„, and k( = k„ for all 
m = 1, .-., 12) for the separate months model fitted 
to the CPEs obtained from z * = 30 h and z * = 60 h, 
respectively. 

Likelihood ratio tests confirm the validity of the 
homogeneous k assumption: for the cases z* =30 h 
and z*=60 h, respectively, 8.23 and 7.56 are com- 
pared with a chi-square distribution on 11 degrees 
of freedom; no evidence that k should vary from 
month to month. 

Table 1. Results when the separate months model is fitted to 
cluster peak exceedances obtained using i * = 30 h 

Month (m) ".n <?„                            It 

1 38.38 16.75 (2.01) 
2 29.68 15.60 (1.99) 
3 34.65 11.-37(1.39) 
4 29.57 10.63 (1.25) 
5 24.85 7.6S (0.79) 
6 25.77 8.75 (0.96)          0.3603 (0.0469) 
7 24.26 7.23 (0.79) 
S 23.71 9.22 (1.08) 
9 29.95 12.12 (1.37) 

10 2932 10.76(1.26) 
11 34.45 12.34 (1.53) 
12 33.27 16.03 (1.84) 

Table 2. Results when the separate months mottel is fitted to 
cluster peak exceedances obtained using z* =60 h 

Month (m) Um ffm H 

1 39.95 23.28 (2.60) 
2 30.94 22.93 (2.60) 
3 35.77 14.09 (1.57) 
4 30.52 13.61 (1.51) 
5 25.65 9.48 (0.95) 
6 26J2 11.52(1.20) 0.4975 (0.0573) 
7 Z5.07 8.76 (0.90) 
S 24.45 11.97(1,30) 
9 31.03 16.75 (1.89) 

10 30.69 13.57 (1.44) 
11 35.58 16.32(1.98) 
12 34.75 19.98(2.11) 

The overall adequacy of the model in both in- 
stances is strongly supported by the probability and 
quantile plots shown in Fig. 3. 

6.    Step 4 —Return Level Estimation 

6.1    Profile Likelihood Confidence Intervals 

For given monthly thresholds u„ and GPD 
parameters (T„ and k^, m = 1, .... 12, the r year re- 
turn level qr is obtained as the solution of the equa- 
tion 

i X„[\-k„{q,-u„)l(T„f (4) 

where A„ is the monthly exceedance rate of 
threshold u„t. This arises by setting the exceedance 
rate of level q, in any given year, given by the LHS 
in Eq. (4), equal to Mr. (Note thai \iqr^ u„, for any 
m, then the quantity A„,[l-A^m(9,-«m)/o-„]"*" 
should be replaced by A™; and if for any m k„>0 
and q, ^«„, + cT„,/k„,, the replacement should be by 
zero, because of the range on which the GPD is 
defined.) 

We have not yet considered the monthly ex- 
ceedance rate parameters Xm. Assuming a Poisson 
rate of storm occurrence (following Ref. [7]), the 
maximum likelihood estimates for these are simply 
the mean annual numbers of storms occurring in 
each month. A point estimate for q, can be ob- 
tained by substituting the thresholds u„, and the 
parameter estimates for A„,, <Tm, and k„, into Eq, 
(4), and solving numerically. Standard errors can 
be estimated via techniques such as the delta- 
method, hut the construction of symmetrical confi- 
dence intervals within a specified number of 
standard errors either side of the mean is not rec- 
ommended. Instead, we strongly suggest the use of 
profile-likelihood. Rather than use the limiting 
quadratic form of the likelihood surface, profile- 
likelihood makes use of its actual shape for the 
data in question. The .severe asymmetry of the sur- 
face often encountered when it is calculated for re- 
turn levels suggests that conventional symmetrical 
confidence intervals are highly misleading. 

The details involved in the calculation of profile- 
likelihood confidence intervals for return levels are 
not entirely straightforward, and we describe them 
here. For each of a range of possible values of the r 
year return level q,, we maximize the log-likelihood 
with respect to the model parameters subject to the 
constraint Eq. (4), which ensures that q, is in fact 
the desired return level. Technically this can be 
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Fig. 3. Probability and quantile^uantile plots. 

achieved by making one of the parameters the sub- 
ject of Eq. (4). Suppose, without loss of generality, 
that (n is chosen. Then Eq. (4) gives 

m=A„(g,-«,)/{!-['■-'-C)M,M, (5) 

where 

C=    X   A„[l-fcm(9r-««)/<?■«,]. (6) 
m-2 

The return level q, is fixed at the desired level, and 
the log-lilcetihood L=L(q,) maximized with re- 
spect to the parameters \m, km, and (n, ..., an. At 
each iteration in the maximization, CTI is calculated 
numerically from Eq. (5), and L is obtained as fol- 
lows: suppose the CPEs occur over a period of / 
years, and the number of CPEs in month m in year 

j is n^. Let «„ = Sn^, and denote the CPEs^'™; 

(■ = 1, ..., n„. Then 

i,.J]-..,IOg.. + (i;-l)|lOj(l-^)] 

m* L nfl 
logA„- S   SIogK,!).     (7) 

A confidence interval for q. can then be formed via 
inversion of a likelihood ratio test, i.e. as the set of 
values qo for which 2lL{q,)—L(qo)\ is not signifi- 
cant when compared with a chi-square distribution 
on one d.f., where g, is the m.l.e. for q,. 

6.2   Implementation for the ShefTield Data 

Tables 3 and 4 give point estimates and 95% pro- 
file-likelihood confidence intervals for the 10, 50, 
and 1000 year return levels at the Sheffield site, 
using the CPE sets obtained via z* = 30 h and 
z* = 60 h, respectively. 

Figure 4 shows the profile-likelihood for ^50 ob- 
tained using ^ * = 30 h, illustrating the gross asym- 
metry in the surface. The vertical line is plotted 
through 4.^1 = 82.4 knots. The horizontal line lies at 
a level 0.5 x ;^'i'{0.95) below the maximized log-, 
likelihood, the intersections with the surface thus 
providing the bounds for the 95% confidence inter- 
val. 
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Table X Point estimates and 95% profile-likelihood ronfidencc 
intervals for some return levels: z * = 30 h 

Return period and m.l.e. for return level 

10 (4,0- 76,4)             30 (4JO=82.4) 1000(4,™ = 88.8) 

95% Proflle-lilcelihond confidence interval 

(72.0, 84 .9)                  (77.0.93.9) (81.8, 103.8) 

Table 4. Point estirnates and 95% profilC'likelihood confidence 
intervals for some return levels: z' = 60 h 

Return period and m.l.e. for return level 

10 (4i»« 77J)             50 (^»=82J) 1000 (4,000= 85.8) 

95% Profite-likclihood confidence interval 

(73.3, 86 .7)                 (78.4,93.1) (82.3, 97.8) 

CM 

s 
o 

a> 
o 

a.   00 

o 

90 1(X) 110 

fifty year return level 

F3{. 4. Profile likelihood for 50 years return level. 

7.   Discussion 

The analysis of the previous four sections seems 
to be very satisfactory for the data collected at 

Sheffield. Theoretically motivated models appear 
to be vindicated by the good fit demonstrated by 
the plots, and homogeneity arguments pertaining 
to the wind process in different seasons are sup- 
ported. The consistency of inferences drawn from 
the two sets of CPEs obtained using z* = 30 h and 
z* = 60h suggests a robustness of results to the in- 
formal methods employed in the selection of 
thresholds and in cluster identification procedures. 
Finally, while the entire recommended procedure 
may appear quite complex, once the appropriate 
software has been set up it can be implemented 
very quickly and easily, even on a small machine 
such as a Sun SPARC station. 

Despite the success of the algorithm described, 
which it is expected will be repeated at other sites, 
it is very important to bear in mind a number of 
cautionary comments. In particular, we must re- 
member that we have relied very heavily on the 
assumption that there is essentially a single meteo- 
rological mechanism which is responsible for the 
generation of all extreme gusts. It is clear that this 
is violated in climates where several distinct types 
of storm can generate extreme winds (e.g., both 
normal temperate zone storms and hurricanes can 
occur and generate very high velocity winds). At 
sites at which such climates prevail, considerations 
different to those presented in this paper apply. 
For example, it may be that we know that hurri- 
canes can occur at a site, but the short run of data 
available does not include any hurricanes. This 
highlights a basic limitation in any extreme value 
analysis—i/ we cannot assume that all the physical 
mechanisms which can generate extremes have been 
observed in our data, we cannot produce realistic esti- 
mates for return levels. The best we could do under 
such circumstances is attempt to import knowledge 
on the unobserved mechanisms from other sites. 
Any such analysis would, of course, be extremely 
vulnerable to inter-site differences in behaviour, 
which could only be assessed theoretically. 

In the more favourable situation where instances 
of all the relevant types of system have been ob- 
served, it seems clear that separate models should 
be fitted to the extremes generated by each one. 
The overall exceedance rate of any particular high 
level could then be expressed as a sum of compo- 
nents corresponding to each system type, and re- 
turn levels estimated numerically in a manner 
similar to that employed in Sec. 6. 

Two further aspects of the models considered 
here are worth brief discussion: 
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7.1    Piecewlse Seasonality 

The discontinuous (piecewlse) nature of the 
manner in which all seasonally varying parameters 
are modelled clearly does not match the continuous 
change inherent in natural processes. However, ex- 
perimentation with model modifications which al- 
low the parameters to vary continuously [10], 
suggests that inferences are barely altered in rela- 
tion to a separate months model for extreme wind 
gusts. The significant increase in computation time 
incurred by fitting continuously varying parameters 
is therefore not thought to be worthwhile. 

7J   Weibull-Type Tails 

More interestingly, we note that the shape 
parameter k fitted to the Sheffield data is very defi- 
nitely/wsj'rtVe. A likelihood ratio test overwhelm- 
ingly rejects a null hypothesis which constrains k to 
be zero, in favour of an alternative which allows it 
to be greater than zero. 

Positive k values correspond to a Weibull-type 
upper tail (with a finite upper endpoint) for the 
distribution of extremes. Traditional analyses, on 
the other hand, have been based on the assumption 
of a Gumbel-type upper tail for extreme wind 
speeds (with no upper endpoint), following from 
the notion that there is no natural upper bound to 
wind velocity anywhere near the orders of magni- 
tude at which wind-speeds are actually observed. 
However, the findings of this paper concur with 
those of many other authors. Lechner, Leigh, and 
Simiu [5], for example, find that a Weibull distribu- 
tion performs significantly better than a Gumbel 
distribution for the majority of a sample of 100 sta- 
tions studied in the United States. These authors 
point out that convergence to the Gumbel distribu- 
tion can be extremely slow, and that the Weibull 
distribution, as a penultimate asymptotic approxi- 
mation, can then often provide a better fit even for 
sample sizes as large as one billion. In view of this 
consideration, we contend that the arguments sup- 
porting the use of the Gumbel distribution are 
something of a red herring as far as any practical 
applications are concerned, and that if the data 
supports the case for Weibull-type upper tails, then 
a positive shape parameter should duly be fitted! 

7J    Conclusions 

The analysis of the Sheffield data presented in 
this paper has stood up to a fairly rigourous 
scrutiny. Further, the assumption of a single mete- 

orological mechanism underlying the generation of 
extreme gusts is believed to be well-founded in the 
U.K., and we suggest that even the estimates of 
1000 year return levels produced from the 10 years 
of data can be quoted with some confidence (pro- 
vided that we remember that the quotation of a 
1000 year return level does not incorporate any 
forecast of a homogeneous climate over the next 
1000 years!). It is worth elaborating here on the 
precise manner in which the extreme value paradigm 
[1] has been applied to our problem of return level 
estimation. Theoretical (asymptotic) arguments 
suggest that the GPD should provide a good ap- 
proximation to cluster peak excesses over 
thresholds, provided the thresholds are large 
enough. Since the approximation does appear to be 
good for all thresholds above a level close to the 
upper 93rd percentile of the data, we feel justified 
in assuming that the asymptotic arguments are ap- 
plicable at these levels. By their very nature, they 
are then applicable at all higher levels. This en- 
ables us to extrapolate beyond the upper endpoint 
of our sample, and hence estimate return levels for 
periods far longer than those for which data have 
been recorded. There is obviously a limit to the 
extent to which this extrapolation is viable, but 
hopefully this should be self-apparent: provided 
the method of calculating confidence intervals is 
not based on unfounded assumptions about the 
shape of the likelihood surface, any attempt to ex- 
trapolate too far will simply lead to confidence in- 
tervals which are too wide to be of use. 

However, this last point leads to a very important 
cautionary note. Most of the analyses on which cur- 
rent design-level specifications are based make the 
assumption of Gumbel-type upper tails. The effect 
of this has almost certainly been to over-estimate 
return levels at most sites. Thus structures have of- 
ten been designed to be stronger than is actually 
necessary, and the precision of return level esti- 
mates has not been of crucial importance. In con- 
verting to the more appropriate Weibull-type tails, 
it becomes essential to make adequate allowance 
for the margins of error associated with return 
level estimation. To rely, for example, on a proce- 
dure such as the delta-method, which does not cap- 
ture the inherent asymmetry in these error 
margins, could prove disastrous! 
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